Malcolm Jacotine

Home » Archives for Malcolm Jacotine

About Malcolm Jacotine

This author has not yet filled in any details.
So far Malcolm Jacotine has created 19 blog entries.

Methanol A Promising Solution?

There has been much talk about reducing CO2 emissions from superyachts and apart from incremental changes that may be possible through technology such as hybrid propulsion, batteries, digitalisation and efficient hull design, the uncomfortable truth is it will not be sufficient to reach the goal of zero-carbon yachting.

The only way to achieve that goal is to move from fossil fuels to alternative fuels or energy carriers that are suited to the operational profile of the vessel. In the shipping industry batteries and Hydrogen are seen as viable solutions for coastal vessels where refuelling can be done regularly but, other fuels such as Methanol and Ammonia (very challenging on storage and safety) are seen as more practical for ocean going vessels.

The main problem with Hydrogen and batteries is the volumetric energy density compared to fossil fuels – this can be seen in the diagram below.

This is certainly a consideration with superyachts where space is at a premium. Requiring more volume for fuel, ancillary equipment, and associated safety systems, will either compromise the interior, significantly reduce the range, or both.

Apart from bio-diesel such as 2nd generation Hydrotreated Vegetable Oils (HVO) the most promising fuel may be Methanol.

What is Methanol

Methanol (CH3OH) is one of the four basic chemicals used to produce all other chemical products such as formaldehyde, acetic acid, and plastics.

It is a colourless water-soluble and biodegradable liquid at atmospheric conditions with a mild alcoholic odour. Energy density is approx. 14MJ/l compared to diesel which is 34MJ/l. It boils at 64.6 C and has a Flashpoint of 11 so requires additional precautions for use, storage and handling but, these are well understood.

It burns cleanly with no particulates, does not contain sulphur and the combustion of Methanol emits a very small amount of NOx. Engines using Methanol can be Tier III compliant without exhaust gas after treatment.

Methanol is mainly produced from natural gas or coal and, according to the International Renewable Energy Agency (IRENA), annual production is around 98Mt and accounts for about 10% of the CO2 emissions from the chemical and petrochemical industries.

Green Methanol

With all alternative fuels it is important to understand the GHG emissions along the whole value chain, including production, storage, transportation, and final use. Methanol does emit CO2 when combusted and in the reforming process for Hydrogen but, importantly, it can be carbon-neutral depending on the energy and feedstocks used in the production of the fuel.

Production methods include: –

• Bio-Methanol from bio-mass such as agricultural waste, bio-gas, sewage, municipal solid waste and black liquor from the pulp and paper industry.

• E-Methanol from Green Hydrogen and, either CO2 from direct air capture (DAC), or carbon capture and storage (CCS).

Currently only about 0.2Mt of Green Methanol is produced. Studies suggest this is forecast to grow to 2Mt by the end of this decade. It is one of the easier fuels to scale as the technology is well understood and much of the infrastructure, such as storage and distribution, is already in place.

Availability

Like all alternative fuels this is a challenge, and much will depend on demand and the scaling up of production and bunkering infrastructure.

Shipping companies such as Stena and Maersk are already driving maritime demand, and the chemical industry will require Green Methanol to reduce their CO2 emissions. This increasing demand will provide the producers the confidence to invest in production and improving availability – it’s likely there will be more demand than supply in the early days.

In the meantime, Grey and Blue Methanol that use natural gas, carbon capture and renewable feedstocks, could be a suitable pathway until such time Green Methanol is more widely available.

According to the DNV Alternative Fuel Insight, Methanol is already available in 117 port terminals around the World, including Algeciras, Tarragona, Genoa, Livorno and Trieste. It can also easily transported by truck.

Maritime Fuel

A major benefit is Methanol, unlike Hydrogen and Ammonia, can be carried in structural tanks – the same as diesel. It does require additional barriers, double walled piping, ventilation, and inert gas, but there is wide experience in its transport and use. The IMO have produced guidelines for its use as a marine fuel under the IGF Code – Interim Guidelines For The Safety Of Ships Using Methyl/Ethyl Alcohol As Fuel (MSC.1/Circ.1621).

It can also be used in diesel engines and reformed to produce Hydrogen for Fuel Cells.

Diesel Engines

Diesel engines are a mature technology with some engines around 45% energy efficiency at optimum power. Overall efficiency can be further improved by using hybrid systems, waste heat recovery and power management to optimise engine performance and electricity generation. In addition, they are well suited to running on alternative liquid and gaseous fuels.

In a recent White Paper titled “The Future of Internal Combustion Engines” Rolls Royce maintain combustion engines will continue to play an important role but, with a steady transition away from fossil fuels to sustainable fuels. And, as well as new engines optimised to run such fuels, they also see the need to offer conversion kits for existing engines.

As an example the Stena Germanica, operating in an Emissions Control Area (ECA) between Germany and Sweden, was successfully converted in 2015 to burn Methanol in its engines.

AP Molller Maersk believe in the fuel for shipping and have signed a contract for 8 x 18,000 TEU container ships to be delivered in 2024 with engines running Green Methanol.

ScandiNAOS has produced a diesel engine with power outputs from 150 – 450kW that runs on Methanol for propulsion and genset applications. Approved by Lloyds and DNV.

Image: Courtesy of ScandiaNAOS

There is no doubt that in the coming years we will see most engine manufactures launch new engines to run on alternative fuels such as Methanol, as well as upgrade kits for their existing engines.

Fuel Cells

Most Fuel Cells require Hydrogen, and Methanol is a great source of Hydrogen.

Unfortunately, whether Hydrogen is stored as a liquid or a compressed gas, it has low volumetric energy density. You need about 7 – 10 times more volume than for the equivalent amount of diesel, whereas Methanol requires about 2.5 more volume.

Methanol can be reformed into Hydrogen onboard for use in the Fuel Cell. And, interestingly, there are reformers that use a blend of di-ionised water to achieve 30% – 40% more Hydrogen, compared to using pure Methanol.

This and the other characteristics of Methanol, make it an ideal fuel for Fuel Cells.

Superyachts

Lurssen have announced they are building a 100m+ yacht that will use reformed Methanol in a Hydrogen PEM-FC as part of the energy mix.

Feadship, with the ‘Pure’ concept, have engineered different solutions that will allow for a phased transition from Diesel – HVO – Methanol by including this pathway in the design and build. Partial or full conversion to Fuel Cells may also be a possibility.

Copyright “Feadship”

Though the above are large yachts, the Fastwater Project has recently shown how it can be used in a smaller vessel. They successfully converted a Swedish Pilot boat to run on Methanol.

Future Proof

The idea that electrification of superyachts via hybrid or diesel electric will ‘Future Proof’ a yacht misses a critical component, the fuel. Claims of this type need to be treated with caution.

It’s one thing to swap out a diesel engine for a Fuel Cell, but it’s a totally different matter to convert a yacht for a fuel that is higher risk and less energy dense. Apart from the high cost, it is unlikely to be practical without significantly compromising space and/or range.

Building a yacht ‘Methanol Ready’ by including the extra tank capacity, cofferdams, ventilation, piping and, later inert gas system, would be one way to ‘Future Proof’ a yacht. And, like ‘Pure’ It would allow the yacht to initially run on MGO or HVO and, in the future, covert the engines to run on Methanol and allow hybrid solution that includes Fuel Cells in the mix.

Conclusion

The evidence suggests that Methanol is a serious alternative to diesel fuel that would significantly reduce a yachts GHG emissions and improve overall air quality.

There are still some challenges to overcome such as the availability of Green Methanol, though Grey and Blue Methanol could help with the transition.

A limiting factor at present is the availability of engines and/or conversion kits. The indications are that we will see more these in the next few years, and with the power required by superyachts. And, although PEM-FC are relatively mature, combining reformers in a maritime setting in MW scale, is less so, and may restrict earlier adoption. However, a hybrid solution using Methanol engines and PEM-FC could certainly be a viable solution in the near term.

Methanol clearly has advantages over many of the alternative fuels. Given the available build slots and projected launch dates, a forward-thinking owner might be well advised to consider the use of Methanol in their next superyacht to not only protect the environment but also protect the future value of their investment.

By |2021-12-17T15:24:13+01:00December 17th, 2021|environment, Sustainability|

Plastic Pollution Below the Waterline

There is a growing body of evidence that suggests a large percentage of the microfibres in our oceans is the result of washing clothes in automatic machines. Many of those microfibres are from man-made fibres i.e. plastic. It is suggested that up to 30% of the micro plastic pollution in our oceans may come from this source.

One such study detailed in the report “Me, My Clothes and the Ocean” by Ocean Wise and sponsored by the Canadian Government, revealed a surprisingly large variance in the amount of microfibre textiles shed in a single wash; ranging from a loss of 9.6 mg to 1,240 mg, or an estimated 9,777 to 4,315,371 microfibres, per kg of textile washed. Factors include the type of machine, wash cycle, type of fabric, fabric finish and age. Amongst the worst products are fleeces made out of man-made fabrics.

Just think how many kg of clothing a yacht laundry handles on a daily basis!

Various countries are starting to take this plastic pollution seriously. Within our European waters France has already introduced a law (LOI n° 2020-105 du 10 février 2020) that will require manufactures to include microfibre filters in washing machines sold from 2025 and, in the UK, an all-party group of MP’s are trying to introduce similar legislation, and have produced their first report.

But what has this to do with superyachts?

Unless your yacht has an Advanced Wastewater Treatment System (AWTS) that processes black and grey water, laundry effluent – including the microfibres – is discharged straight into the sea, often at anchor or in port.

Even if an AWTS is installed, the microfibres will end up in the residual sludge that is eventually discharged in compliance with MARPOL at least 12nm offshore. It is not being prevented, just displaced by time and place and still finding its way into our oceans.

So, whilst the industry has been focused on reducing plastic onboard, we may have been ignoring what happens below the waterline. Along with other pathogens, contaminants, and organic matter – see my previous article “What Lies Beneath” grey water is perhaps having a more profound effect on the ocean and marine life than stopping the use of plastic straws or bottled water onboard, especially in the coastal waters where yachts congregate. After all, we play in that water and may also consume seafood that may have been harvested from inshore waters.

Until microfibre filters are installed as standard then the only real solution is to fit external filters to the waste discharge from washing machines.

In a 2020 Bloomberg article, PlanetCare who produce an external washing machine filter, mentioned their filter can fill up in about 20 laundry cycles, after which they are sent back to PlanetCare where the fibres are collected, repurposed and the filters recycled. That would be a day’s use in many superyacht laundries – though they have commercial solutions as well.

Superyachts will require a more practical solution with easy access for cleaning and procedures for storing and disposing of the waste.

With the right filter the superyacht industry has the opportunity to help protect the marine biota and improve sea water quality by removing microfibres before they enter the grey water tank or AWTS and preventing their discharge into the sea.

By |2021-12-17T14:40:36+01:00November 30th, 2021|environment, regulations, Sustainability|

HYBRID YACHTS – MORE THAN JUST HYPE?

There has been a lot written about ‘Hybrid’ yachts, often with some hype about being eco-friendly, having green credentials, etc., but with very little information of substance to support the claims.

Hybrid, in the context of motor yachts, just means there is more than one system capable of providing propulsion and/or electrical power.

Apart from a couple of innovative examples, all these systems rely on burning diesel fuel (MGO/MDO) as the primary energy source. This is sometimes glossed over where batteries are concerned.

Hybrid motor yachts and tenders have also been compared to Hybrid vehicles, but completely ignore the fact that they generate power from coasting or braking to increase their efficiency – something not available to yachts.

So, in this piece, I take a more in-depth look at Hybrid systems in an effort to provide some much-needed clarity on their benefits. I also question whether it is a transitional technology, or if it will be here for the longer term?

No Standard Operation

When it comes to superyachts and their operation, this is true. It’s what makes optimising the propulsion and electrical package challenging.

Main engines (ME) must be able to deal with variable speeds e.g. manoeuvring, cruising, maximum speed.

Generators (GEN) must handle variable loads and the ‘cycling’ of equipment that is dependent on the operational mode e.g. underway, guest-on, guest-off, in port or at anchor.

Given the variability of speed and load it can be difficult to size the main engines and generators for their best performance. This matters, because running engines at optimal load increases efficiency, reduces fuel consumption and emissions such as CO2; this is where ‘Hybrid’ can help…but, more on that later!

A Little History

Traditionally, superyachts used diesel main engines to provide propulsion power, and diesel generators to provide the electrical power for auxiliary and hotel loads – independent systems.

Fig 1. Traditional – ME to drive the propellors and GEN’s that power the hotel and auxiliary loads.

Although Diesel Electric has been used in shipping for many years it was not until the launch of M/Y Limitless in 1997 that it started to receive attention in the superyacht industry. And, in 2005 we saw the launch of M/Y ICE a Diesel Electric yacht that also used Azipods – interestingly both were built by Lurssen.

The story goes that many shipyards were reluctant to adopt Diesel Electric due to the complexity, engineering risks and the associated costs of developing a new platform – concerns that still apply to any new technology. However, their benefits, and the demands from yacht owners and their technical team saw a steady increase in use – especially on the larger yachts.

Fig 2. Diesel Electric – GEN’s provide electrical power for propulsion through Permanent Electric Motors (PEM’s) and the hotel and auxiliary loads.

Diesel Electric has many benefits. Having a number of generators (can be different sizes) that can be brought on-line for propulsion, and the hotel and auxiliary loads, meant the engines could run at optimal loads with better efficiency. It also provided a high degree of redundancy, greater flexibility in the technical layout – no longer limited by shaft lines – and, reduced noise and vibration which improved comfort.

You could say Hybrid is a mix of ‘Traditional’ and ‘Diesel Electric’ systems, combined with batteries (BAT) and sophisticated Power Management System (PMS) to optimise engine performance and efficiency.

The diagram below is an example of a Hybrid system.

Fig 3. ‘Hybrid’ Arrangement

Propulsion can be driven by ME’s, PEM’s or both (Boost), electrical energy can be generated from the ME and/or GEN’s and stored in batteries. The PMS takes care of managing the loads for propulsion, hotel and auxiliary systems.

The 83m Feadship, M/Y Savannah, delivered in 2015, is often cited as the first Hybrid motor yacht; though, just like Diesel Electric, it was not new to shipping. Since then we have seen am increase in its use across a variety of different sized motor yachts.

As mentioned, although diesel fuel is the primary energy source, there are some examples of innovative Hybrid motor yachts that use ‘Alternative Energy’. These include Artifact that uses solar, and the recently announced Lurssen project that will use Methanol in the energy mix.

No doubt the use of alternative energy will increase over time as the industry strives to reduce its carbon footprint.

It’s All About Efficiency

There are different types of marine diesel engines, two-stroke, four-stroke, slow speed, medium speed and high speed, each with their own performance characteristics. We use four-stroke high speed diesels on superyachts for both main engines and generators.

Whilst diesel engines are the most efficient internal combustion engines (ICE) at approx. 45% energy out vs. energy in, there are challenges to improve this – we may be close to the max with modern engine designs and materials.

What may not be so obvious, is that diesel engines have an optimal load; a point where the power generated requires the least amount of fuel. For many marine diesels this is at or near the Max Continuous Load and can be found from a table or graph of Load (kWh) vs. Specific Fuel Oil Consumption (g/kWh) in the engines test/technical file.

The example below is the SOFC for fixed speed 340 kW generator.

Fig 4. SOFC for 340kW GEN

The lowest fuel consumption 205 g/kWh is at 100% load. As the load decreases fuel consumption increases at a shallow and near linear slope until about 40% load, where it starts to rise exponentially.

The effect of running at or near optimal load on fuel consumption can be seen in the below.

Fig 5. Using one GEN at 80% load instead of two at 40% load can reduce the fuel consumption by approx. 9%.

Providing the generators are sized correctly it is unlikely they would run at less than 40% load – a point to bear in mind when looking at fuel efficiency claims for ‘Hybrid’ systems as they may be based on the more extreme ends of the SOFC curve.

This is also relevant to main engines though because they are able to run at variable speed, the difference is less pronounced – one of the advantages of variable speed generators as fitted to Artifact.

In the example below of a 3600 kW main engine, the SOFC slope is shallow and near linear from 100% load down to 25% load, where it starts to rise exponentially. There is about a 5% difference in fuel consumption between 25% and 100% load – a much wider load range and lower fuel saving compared to the fixed speed generator.

Fig 6. SOFC for 3600 kW ME

Unless ME’s are significantly over-sized to eke out that extra 0.5 knot of top speed, the only times when running at less than 25% load would be whilst maneuvering and/or motoring at sub-optimal speeds – you can determine this by comparing power/speed graph with SOFC.

What About Batteries

Batteries are just one form of Energy Storage System (ESS) others include devices such as capacitors and flywheels but, they all need an external energy source to charge them e.g. generators, solar, shore power.

Batteries perform a number of functions in a Hybrid system.

Each of the above helps to improve performance and efficiency of the yachts systems by keeping the engines operating at their optimal load, reducing fuel consumption and CO2 emissions.

Batteries with sufficient capacity can also power propulsion and/or the hotel and auxiliary loads for short distances or time.

Engine Free Operation

Whilst it is clear that batteries are an integral part of a Hybrid system – though not essential as I have sailed on a Hybrid yacht without batteries – whether they offer significant benefit when used for ‘Engine Free’ operation is another matter.

Engine Free, often described as ‘silent’ or ‘zero emissions’ mode, is perhaps a little more nuanced than might be suggested.

One reality is that emissions are not really reduced or prevented, they are merely displaced by time and location and do nothing for the overall CO2 footprint of the yacht – you still need to burn diesel fuel to generate the electrical energy stored in the batteries.

When it comes to noise, I also found that on larger yachts that with proper isolation, sound insulation and dry stack exhausts, it was difficult to tell if a generator was running in the guest areas. It was often the air-conditioning that emitted the most obvious noise and shutting down the a/c often resulted in an eerie silence, even with generators running.

With the above and, given the known issues with Li-ion batteries, from their production and imbedded emissions, to safety, life-cycle and recycling, I think the use for Engine Free operation needs to be carefully assessed. The current battery technology does not provide sufficient capacity for any reasonable level of autonomy without significantly impacting the interior space and weight.

In addition, if installing large battery banks for Engine Free running, you may need to upsize the generators as the total amount of energy required is not diminished, it is just generated over a shorter period of time. You may also lose some efficiency gains due to the power required to keep the battery banks at optimum temperature.

A Hybrid Solution

The following example provides flexible modes of operation.

Fig 7. Fully Integrated Solution

Operation Modes.

A. Stationary – Hybrid GEN/BAT for electrical loads

B. Low Speed – Propulsion and electrical loads from Hybrid GEN/BAT

C. Cruise – Mechanical propulsion, Hybrid GEN/BAT electrical loads

D. Performance (Boost) – Combined mechanical and electrical propulsion/loads from Hybrid GEN/BAT

The main purpose of these modes provides operational flexibility to ensure the optimal engine load, performance and efficiency.

Fuel Saving and CO2 Reductions

Whilst we now know fuel can be saved by running diesel engines at optimal loads, the more difficult question to answer is; by how much?

One DNV study ‘Electrical Energy Storage For Ships, published in 2020’ suggested that the ‘fuel saving potential’ for yachts was around 5 – 10%. Engine manufacturers and yacht builders tend to be a little more “optimistic” with the potential savings and benefits often using emotive words to describe their benefits.

Where you measure the ‘delta’ from matters, as using the extremes will result in significant differences in SOFC, but may not reflect the real-World use – the time the engines spend at least efficient load may have very limited effect on overall consumption.

It is important not to focus on the headline figure, but to evaluate the potential savings across a range of speed and load scenarios that are expected with the yachts use. The engines technical files will help identify the real savings.

Is It Worth It

The evidence confirms that a well-designed ‘Hybrid’ system can have a positive impact today in terms of more efficient yachts and reduced fuel consumption. According to the IMO fuel coefficient, every ton of MGO/MDO emits 3.206 tCO2. So, on that metric alone, the answer would have to be yes.

Unfortunately a ‘Hybrid’ yacht will be more expensive which no doubt affects more widespread use. When viewed purely on a cost/benefit basis, it may be hard to justify the extra cost against the potential fuel savings, and reduced operational costs due lower engine hours and extended maintenance intervals. Depending on use, the break even point may be a many years away and lay outside the envisaged ownership timescale. So as long as it’s an ‘option’ from builders cost will probably trump environment.

In the evaluation process, it worth considering the cost of diesel fuel may increase in the future due to carbon tax, and renewable fuels such as HVO (drop-in diesel) will be significantly more expensive. So, the additional cost today, may be sound investment for the future?

Finally, whatever energy is used in the future, it will likely be less energy dense than diesel fuel, and certainly more expensive. This means power management and efficiency will become even more critical and Hybrid technology will remain a fundamental component, especially in mixed energy solutions.

By |2021-11-30T18:17:37+01:00August 31st, 2021|environment, Sustainability|

Superyacht Crew – OOW Unlimited, An Alternative Worth Considering?

There has been much debate about the quality of education and training for superyacht crew and, of course, the 3000gt limit. On the latter point, not only does this prevent you from working on the largest superyachts, but also restricts career opportunities.

Yes, but the commercial CoC is not practical for yacht crew, it is expensive and time consuming!

As I previously wrote here for those wishing to serve as Master on Yachts >3000gt there is a difference in cost and time due to the breadth and depth of education and training, though when all factors are taken into account and weighed against the benefits, not as much as you might imagine.

Now the option of ‘blended learning’ makes an OOW Unlimited a more attractive, practical and cost effective proposition. In the following piece I take look at this pathway and compare against the traditional Yachting route.

Note: This is based on the UK Maritime and Coastguard Agency (MCA) who developed Yachting training and certification, now MSN 1858, as an equivalent allowed under Article IX of STCW and their requirements for Merchant Navy Deck Officers under MSN 1856.

Education Evolves

The last 18 months has seen an evolution in the way education is delivered; I suspect accelerated by COVD-19. There are now many more education and training establishments that are offering courses online or as ‘blended learning’ where there is a combination of self-study and classroom time; this is also true of maritime education.

One such establishment is Warsash Maritime College who offer OOW Unlimited and Chief Mate/Master Unlimited as ‘blended learning’ following the HNC/HND experienced seafarer route under Merchant Navy Board (MNTB) guidance and MSN 1856.

One of the major benefits of self-study is that you no longer need to spend months at college which, can be expensive due to loss of earnings and expenses – I know what it cost for my Chief Mate/Master Unlimited! You can now study for your CoC whilst still working – Warsash suggest 20 – 24 hours per week.

The Two Main Pathways

The table below summarises the two main pathways – there is also cadetship, but this is not currently widely used in the superyacht industry.

Note: table best view in landscape on mobile phone.

 
YACHT – MSN 1858
MERCHANT NAVY – MSN 1856
OOW CoC
OOW (Yacht) <3000gt
OOW Unlimited
Academic qualification
NIL
HNC Nautical Science
Training Record Book required
YES NO
RYA Qualifications required
YES NO
Sea Service

36 months sea service – see MSN 1858

Plus required RYA sea service if YM on vessel <15m

36 months sea service –inclusive of 6
months  engaged in bridge watchkeeping duties
Yacht Sea Service Verification
PYA or Nautilus
PYA or Nautilus
Other requirements

RYA/IYT YM Offshore.

As an example, the UKSA Professional YM Offshore is 16 weeks and GBP 9,900 all inclusive.

NIL
Duration

4 weeks

OOW Genral ship knowledge

OOW Nav and Radar

Excluding RYA/IYT YM Offshore

4.5 months

HNC Nautical Science blended learning – see breakdown below

SQA Exams

Orals Exam
YES YES
Fees without RYA/IYT and short courses
*Correct 20/21 intake
GBP 4,150.00*
GBP 5,995.00*
Funding available
Slater Scholarship

Slater Scholarship

Student Loan

Short Courses required

STCW Basic Safety

EDH

Helm (O)

ECDIS

GMDSS GOC

PSCRB

STCW Basic Safety

EDH

Helm (O)

ECDIS

GMDSS GOC

PSCRB

Medical First Aid

Advanced FF

Progression to Chief Mate Yachts <3000gt

RYA YM Ocean – time and cost

Medical First Aid

Advanced FF

Helm (M)

Helm (M)
Progression to Master Yachts <3000gt

24 months onboard yacht service, inclusive of 240 days wathckeeping whilst holding OOW (Y) <3000gt

NASRAS (Master Y)

Business and Law Master (Y)

Celestial Nav (Master Y)

Stability (Master Y)

Seamanship and Meteorology (Master Y)

24 months onboard yacht service, inclusive of 240 days wathckeeping whilst holding OOW (Y) <3000gt

NASRAS (Master Y)

Business and Law (Master Y)

Celestial Nav (Master Y)

Stability (Master Y)

Seamanship and Meteorology (Master Y)

Progression to Chief Mate Unlimited
NO

12 months wathckeeping service while holding OOW Unlimited

HND Nautical Science (9 months blended learning)

SQA Exams

NAEST (M)

Proficiency in Medical Care

Orals exam

Progression to Master Unlimited
NO

36 months watchkeeping service whilst holding OOW Unlimited.  Can be reduced to 24 if at least 12 months served as Chief Mate whilst holding Chief Mate Unlimited

Orals exam

OOW Unlimited via HNC

This includes online studying for a Higher National Certificate (HNC) in Nautical Science that provides the underpinning knowledge for OOW Unlimited. A HNC is a recognised UK academic qualification at level 4 which can then be topped up to level 5 with HND or, even Degree level 6 (BSc). Subjects include:

  • Bridge watchkeeping
  • Chartwork, Tides, Sailings and Celestial Navigation
  • Cargo work
  • Meteorology
  • Ship Stability
  • Ship Construction
  • Law and Management

In addition, there are several required courses, some on campus, some online.

  • Navigation Equipment Theory and Practice NASET (O)
  • HELM (O)
  • EDH
  • Signals
  • Preparation for SQA exams
  • Preparation for MCA Signals exam
  • Preparation for MCA Oral exam

There are 3 written assessments mid-course, and final SQA exams in Navigation, Stability and Operations.

The total time for the above is around 27 weeks, approx. 20 weeks online and 7 weeks at Southampton Campus and Simulator Centre.

On top of this you would require the STCW short courses, which are the same as for OOW (Y) plus the addition of Advanced Firefighting and Medical First Aid, which make a lot of sense to have anyway.

Some Pros and Cons

Once you add the time and cost for RYA qualifications on top of the OOW Yacht 30000gt sea service and courses, there is really very little difference compared to the OOW Unlimited. And, unlike a OOW Yacht <3000gt, an OOW Unlimited allows you to progress to Chief Mate Unlimited following similar ‘blended learning’ (HND) and then onto Master Unlimited.

You can also apply for funding to help pay for the qualification.

Apart from the higher standard of education, academic recognition and training provided, there are other significant benefits. You could serve on the largest superyachts, career prospects are improved and not just commercial shipping, but also land-based occupations such as with Flag, Class Societies, insurance, ship management and operations, etc.

It is important to note that currently a Master (Yachts) <3000gt who wants to obtain a Master Unlimited will have to first start with OOW Unlimited and then progress as per MSN 1856 – I have heard that there may be some dispensation following OOW Unlimited for past sea service as Master on a yacht, but this would need to be clarified with the MCA.

For those wanting to serve on Yachts >3000gt, there is also the Marshall Islands (Yacht) Unlimited, but you need to hold a Master Yacht <3000gt and fulfil certain criteria. It is currently only recognised by the Marshall Islands and Cayman Islands registries and restricted to Yachts. This may make sense for those who already have Master Yachts <3000gt, less so for junior officers who have the opportunity earlier in their career to opt for Unlimited certification.

The main challenges I see with the OOW Unlimited pathway are:-

  • Self-study – this requires commitment and dedication and may not suit everyone.
  • Watchkeeping service for OOW and Chief Mate/Master may be a little more challenging to obtain on some yachts.

Conclusion

For those who want to work on the larger superyachts e.g. 500gt and above, there is no doubt the option of ‘blended learning’ for the OOW Unlimited and Chief Mate Unlimited that allows you to study whilst still working, is a positive development.

With its clear advantages, this pathway is now definitely worth considering by those newly entering the superyacht industry, and by those who may be looking to attain Unlimited certification to further expand their knowledge and career opportunities.

If this is of interest my advice is to do your own research, read the MSN’s, contact the various maritime colleges, obtain the very latest information, weigh up the pros and cons, and then decide which pathway best suits your current and future career goals.

By |2022-06-23T09:43:07+02:00July 26th, 2021|captains, qualifications, regulations, Safety|

Shedding Some Light On Solar Energy For Superyachts

There have been several concepts, and a good many articles and discussions relating to the use of solar panels on superyachts. And, as a zero-emissions energy source, this would seem to be an ideal technology to reduce or replace a yachts reliance on fossil fuels. You could have large arrays of panels on the superstructure or build them into sails to provide all the yachts energy…but could you?

Like many alternative energy solutions, away from the sensational headlines, it’s only when you look at the details do you begin to understand whether they are practical solutions or not.

In this piece I will shed some light on the use of solar panels on superyachts.

Using a 65m yacht as an example, I will assess the energy required from generators for a 24 hour period and the area of solar panels that would be required to generate this energy.

Sunlight As Energy

Studies suggest that the amount of sunlight that strikes the earth surface in 1.5 hours is sufficient to handle the Worlds entire energy consumption for 12 months. It is important to understand that although this solar radiation bathes the entire World it is dependent on time, date and location.

For example, from the graph below of Monthly Solar Radiation Estimates (courtesy E.U. Photovoltaic Geographical Information System) for Monaco, the average monthly amount of solar energy is:

  • July 204.49 kWh/m2
  • January 48.46kWh/m2
This is the monthly variation due to the sun’s declination, but there is also the diurnal variation due to the elevation of the sun from sunrise to sunset, as shown below.

Of note, the total radiation (Global) is based on Direct and Diffused radiation e.g. reflected.

Taking the monthly figures, the average daily amount of energy is therefore:-

  • July 6.6 kWh/m2
  • January 1.56 kWh/m2

Much like a stabilised VSAT or TV antenna depends on pointing directly at the satellite for the best signal, the same is true for solar radiation; the highest levels of insolation are when the sun’s rays are perpendicular to the plane – hence the improvement in solar cell performance with systems that track the sun both in azimuth and elevation.

For those projects that have suggested using solar panels on sails, the angle of the sails relative to the sun’s rays will impact heavily on the energy generated. Underway, the wind is unlikely to allow for the most optimum angle and, at anchor if windy, you would need a method of ‘stalling’ the sails to achieve the best angle.

Solar Panel Efficiency

But I have seen powerful solar panels rated at 500-550Wp!

This is true they are available, but panels of that power are approx. 2.2m2 and power rating is the peak performance based on the Standard Test Condition (STC).

The STC is based on horizontal solar radiation of 1000W/m2 at an internal cell temperature of 25°C. Efficiency is measured by how much of the solar radiation is converted into electrical power and currently the best panels have an efficiency rating of 21%.

This means under STC conditions the best 1m2 panel would produce 210Wp but, of course, as can be seen from the graphs above, solar radiation is not constant. And, along with seasonal and diurnal variation, a solar panel is also affected by angle of incidence and other factors that can reduce efficiency, such as system losses, contamination on the surface and temperature.

Air temperature has a major effect on the cell temperature, and higher or lower cell temperature will either reduce or increase the power output by a specific amount for every degree above or below 25°C (STC). This is known as the power temperature coefficient (PTC) which is measured in %/°C.

As an example, monocrystalline panels have an average PTC of -0.38% /°C, while polycrystalline panels are slightly higher at -0.40% /°C.

In general, cell temperatures run approx. 25°C above the ambient temperature. So, on a summer’s day with air temperature of 30°C you could see an approx. 11% reduction in efficiency of a Monocrystalline panel.

Daily Solar Energy Example

Knowing the efficiency of a solar panel enables us to do some basic calculations on daily energy produced from a 1m2 solar panel in July and January for Monaco.

July

  • Average daily solar radiation is 6.6kWh/m2
  • 21% efficiency
  • Total energy produced 1.39kWh/m2 per day

January

  • Average daily solar radiation is 1.56kWh/m2
  • 21% efficiency
  • Total energy produced 0.33kWh/m2 per day

How Much Energy is Required?

Taking a 65m yacht fitted with 200kW generators and, assuming with ‘guests-on’ will require around 4500kWh/day for the non-propulsion such as air-conditioning, stabilisers, water-makers, refrigeration, galley, laundry, water heaters, av/it., etc. This will be less ‘guest-off’ with good power management practices employed by the crew.

On this yacht the flat surfaces available for solar panels is approx. 407m2.

From the above, in Monaco in July, if you wanted to generate the energy from solar panels alone you would need approx. 3,240m2 of panels – approx. 8 x available area.

In addition, you would need and a battery bank of approx. 2.8MWh (only 80% useable due to battery cycling) for the hours when the sun is not shining.

This is assuming maximum efficiency and does not include any de-rating due to shade, cloud, rain, contamination on the panel surface or high air temperature, all of which impact efficiency and final energy generated.

And, in January…well you can work that out!

The Potential of Solar Panels

As can been seen given the variables that effect energy produced and the large surface area required, it would not be a practical solution to replace diesel generators with solar panels – not for large yachts anyway. However, they could be used as a part of a hybrid solution to reduce fuel consumption and CO2 and other exhaust gas emissions.

With the above example 407m2 x 1.39kWh/m2 = 565kWh or approx. 3 hours of generator use. This is a useful saving especially if combined with batteries and power management systems that can use that energy to help with generator efficiency. But, don’t forget, season and location will have a large effect on this number.

The challenge on any superyacht will be finding sufficient flat surfaces and the issue of heat and efficiency. New panel technologies are in development with higher efficiencies, possibly up to 50% and this will help the adoption of solar panels in the energy mix but, by themselves, do not offer a replacement of fossil fuels on superyachts.

By |2021-07-14T11:01:57+02:00July 14th, 2021|captains, environment, Sustainability|

Two Anchors? ‘YAW’ Must be Joking?

Some Captains don’t like to use two anchors and, given some of my early experiences, I can understand the reluctance and the ‘you must be joking, more trouble than they’re worth’ sentiment.

Those early experiences were not always successful and, on occasion, the chains would end up not just crossed, but knotted together – even though I was sure I had spread the anchors wide enough. I didn’t really understand why, and it felt like Aquaman and his water breathing buddies had been having a bit of a laugh seeing who could tie the most overhand knots in my chains – I’ve heard they may also operate in Porto Cervo!

However, I persevered and, when I did get it right, the benefits were obvious.

In this piece I will share what I learnt and one method I used with regular success.

Yacht Movement

When anchored in calm conditions with little wind, sea or current, you don’t need to worry much about the yachts movement, it’s inertia and how it might affect the holding.

Without external forces the yacht just sits atop the point where the chain touches the seabed. But, when wind, current, waves, interact with the yacht you get movement which, in sheltered waters, is mainly surge (longitudinal) sway (transverse) and yaw (rotational).

The manifestation of this movement is that in strong winds a yacht will ‘sail’ around its anchor; sometimes with significant changes in speed and heading. That movement and resultant inertia, combined with the wind force against yacht, places large loads on the mooring equipment, chain and anchor – enough to break the anchor out of the seabed.

Why Two?

We have all heard and felt the terrible shudder as the bow finally comes to a stop against the stretched chain at the extreme of each swing. And, stood on the bridge, bleary eyes transfixed on the ECDIS in the hope that ‘smiley face’ being traced doesn’t turn into the ‘Mark of Zoro’ – a sure sign of dragging!

I found that two anchors could significantly reduce that movement and minimise the chance of dragging. This made staying at anchor in strong winds more secure and comfortable for everyone onboard. I certainly slept better with two out!

It became my preferred choice, not just in strong winds but, also as an option when trying to keep the wind off the aft deck where guests were dinning. Preventing wind blowing away glasses and table settings certainly helps the departmental dynamic!

But How?

Along with the normal factors such as depth, scope, quality of seabed, hazards, weather, etc., there are some basic considerations that I found held true.

  • Set the anchors too close and you do not make significant difference to the yachts movement, and it’s easy to cross when dropping and/or dragging.
  • Set the anchors too wide and, although the movement may be dampened, their pull works against each other, reducing the holding power of your anchors.

Through trial and error, I found that the Admiralty Manual of Seamanship recommendation of forming an equilateral triangle between the bow and the two anchors worked the best. It provided sufficient spread to reduce the movement and also prevent fouling of the chains.

The method set out below is just one of a number I used. It could be described as ‘precision anchoring’ as the end result was you ended up ‘brought up’ on the spot you originally selected. It gives you a lot of confidence when you have to set two anchors in a tight or busy anchorage.

As it requires more a bit more thought and planning to get right, it’s also a great way to teach the bridge and deck teams about anchoring.

Once I have selected the area, using ECDIS and radar to ensure the area is clear, I construct my reference points on an over scaled ENC – changing the VRM units to metres also helps. As I am interested in my final position, I also need to make an adjustment for the position of the CCRP (Continuous Common Reference Point).

It’s an easy calculation as follows – you can access Trig functions on an iPhone by opening the calculator and rotating the screen.

Diagram showing calculation of variable range marker and electronic bearing line

Once you know the amount of chain (scope) you intend to use, you can calculate VRM1 and VRM2 and draw them on the ENC and set EBL1 to point directly at the true wind, and EBL2 perpendicular to wind pointing in direction of 1st anchor – as per the animation.

One word of caution; there is often the temptation to let go the 2nd anchor too early, either before the full scope is paid out, or before the chain is off the beam at a medium to long stay…resist the temptation or you will not achieve the correct spread and you may end up fouling the 1st anchors chain.

Of course, there is nothing wrong with using the bow thruster to move transversely to the 2nd anchor position but, for me, I preferred to use the wind as my thruster as it gave me a better feel of how it was affecting the yacht.

And, when the wind finally abates or shifts direction, it’s time to heave up the leeward anchor before a tangle is created – don’t delay, it’s no fun trying to take a turn out. If you’ve set them properly you can often do this using the windlass without engines or thruster.

Finally

Although I struggled initially, partly because it was something that was not taught and, I also failed to seek advice from others. When I finally got it right, the benefits were clear and as a bonus I found that the thought process involved helped improve my overall approach to anchoring.

I hope this has provided some food for thought, especially for those who have never used two anchors or, have been reluctant due to the horror stories told about fouled chains and anchors.

It is by no means the only way, but it is one that worked for me!

By |2021-06-28T12:56:58+02:00June 26th, 2021|captains, Operations, Safety, ship handling|

What Lies Beneath

Although the primary environmental concern challenging our industry is C02 and other emissions generated from burning fossil fuels, there are other vectors such as sewage and grey water that can also have an impact.

Whilst on the larger yachts the new treatments plants take care of both, producing effluent that can be clean enough to use as wash down water, smaller and/or older yachts may not be so well equipped, or have inadequate black/grey holding tanks. Grey water is often simply discharged overboard.

For those of us who have had the ‘pleasure’ of sticking their head into a grey water tank, we are only too aware of the odious and putrid soup that is contained within, in fact, I suggest many crew would rather inspect a sewage tank than a grey water tank such is the assault on the senses. And, given these sensory observations, and the impact grey water can have on tank coatings, why is grey water treated essentially as a harmless liquid?

Whilst the discharge of sewage (black water) is mostly regulated under the International Convention for the Prevention of Pollution from Ships (MARPOL) Annex IV and other national legislation such as United States Environmental Protection Agency (EPA) Clean Water Act (CWA) grey water from ships and yachts is discharged untreated directly into the sea. On yachts, this is very often in close proximity to the coast, beaches, ports and marinas, where there are swimmers or other recreational water users and where it has the potential for the greatest impact on the marine ecosystem.

So what is grey water?

*If using mobile phone, swipe or rotate screen to see the full table.

Source Grey Water Definition
MARPOL 73/78 Annex V Reg 1 Definitions

4. Domestic wastes means all types of wastes not covered by other Annexes that are generated in the accommodation spaces on board the ship.

Domestic wastes does not include grey water.

RESOLUTION MEPC.219(63) 1.6 Definitions

1.6.1 Dishwater means the residue from the manual or automatic washing of dishes and cooking utensils which have been pre-cleaned to the extent that any food particles adhering to them would not normally interfere with the operation of automatic dishwashers.

1.6.2 Grey water means drainage from dishwater, shower, laundry, bath and washbasin drains. It does not include drainage from toilets, urinals, hospitals, and animal spaces, as defined in regulation 1.3 of MARPOL Annex IV (sewage), and it does not include drainage from cargo spaces. Grey water is not considered garbage in the context of Annex V.

*Note: if in-sink macerators drain into grey water tanks, then the contents and discharge of that tank will need to comply with Annex V.

Clean Water Act, 33 U.S.C. 312(a)(11) Galley bath and shower
Coast Guard regulations, 33 CFR 151.05 Drainage from dishwasher, shower, laundry, bath, and washbasin drains and does not include drainage from toilets, urinals, hospitals and cargo spaces.

So, whilst grey water is well defined, what is less well understood is that untreated grey water contains many undesirable pathogens, organic matter, chemicals and micro plastics (the microfibres that are shed during washing of man-made fabrics) often at levels that can be higher than domestic effluent from sewage treatment plants, and can have an impact on human health and the marine ecosystem.

One of the largest studies on grey water was done by the EPA following a petition in 2000 from Bluewater Network who represented 53 environmental organisations who wanted the EPA to take regulatory action on cruise ship pollution.  The report – Draft Cruise Ship Discharge Assessment Report (EPA842-R-07-005) – was published in 2007 and covered sewage, oily bilge water, solid waste, hazardous waste and grey water.  And, whilst there are significantly more crew/passengers on cruise ships and waste volumes greater, the sources and treatment are very similar to the superyacht industry.

From that study they list common sources and characteristics of grey water in the table below.

Water Source Characteristics
Automatic Clothes Washer bleach, foam, high pH, hot water, nitrate, oil and grease, oxygen demand, phosphate, salinity, soaps, sodium, suspended solids, turbidity

Note: recent studies also suggest micro plastics from man-made fibres are also contained with the waste water.

Automatic Dish Washer bacteria, foam, food particles, high pH, hot water, odor, oil and grease, organic matter, oxygen demand, salinity, soaps, suspended solids, turbidity
Sinks, including kitchen bacteria, food particles, hot water, odor, oil and grease, organic matter, oxygen demand, soaps, suspended solids, turbidity

Note: if food waste from in-sink macerators is draining into grey water tanks this changes the grey water to food waste and therefore discharge must comply with MARPOL V.

Bathtub and Shower bacteria, hair, hot water, odor, oil and grease, oxygen demand, soaps, suspended solids, turbidity

Source: ASCI 2001

Of course, the quantity and quality of grey water varies considerably depending on many factors, such as the number of crew and passengers, the various types of detergents and cleaning products used, personal grooming and hygiene products used by the crew and passengers, and various filters and fat traps if installed.

The EPA study, combined with findings from a previous study by the Alaskan Department of Environmental Conservation – Alaska Cruise Ship Initiative in 2001, found a range of readings of various analytes. A sample of which are found below.

Type Units Av. Concentration Untreated Domestic Water
Pathogens
E.Coli MPN/100mL 292,000
Enterococci MPN/100mL 8,920
Fecal Coliform MPN/100mL 2,950,000 10,000 – 100,000
Other Pollutants
Biological Oxygen Demand (BOD 5 day) mg/L 1,140 110 – 400
Chemical Oxygen Demand mg/L 1,890 250 – 1,000
Alkalinity mg/L 53.8
pH 66.9% between 6.0 and 9.0 Between 6.0 and 9.0
Sulfate mg/L 49.9
Totals Dissolved Solids (TDS) mg/L 578
Total Suspended Solids (TSS) mg/L 704 100 – 350
Turbidity NTU 224
Nutrients
Ammonia – Nitrogen mg-N/L 2.13 12 -50
Nitrate/Nitrite mg/L 0.0872 0
Total Kjeldahl Nitrogen mg/L 10.1 20 – 85
Total Phosphorous mg/L 10.1 4 -15

*MPN – most probable number

Pathogens

Untreated grey water contains many pathogens and, in addition to those listed above, can also include, Salmonella, shigella, hepatitis A and E, and gastro intestinal viruses (national Research Council, 1993). Pathogens can pose danger to human health by contact or ingestion of contaminated water, or by consuming shell fish which feed by filtering water.

The 1986 EPA Quality Criteria for Water, commonly known as the ‘Gold Book’, references pathogen indicators and has defined water quality standards based on two activities of import to yachting: marine water bathing and, shellfish harvesting.

From the samples of untreated grey water analysed in the study, the average fecal coliform contamination exceeded the standard of 43 MPN/100mL for shellfish harvesting and, the average enterococci contamination exceeded the standard of 35 MPN/100mL for marine water bathing.

Chlorine

Although not a major indicator in this study, chlorine is used on yachts in a variety of applications including sanitising fresh water tanks, the discharge of which is generally pumped overboard, often via the grey water tanks, so levels must be carefully controlled so they do not exceed recommended limits.

Studies have found that chronic affects to the marine biota such as poor reproduction and health can be observed at concentrations above 230mg/L with acute effects, severe illness or death, at concentrations exceeding 860 mg/L.

Oxygen Demand

Organic matter from the grey water acts as food for water borne bacteria. The more food available, the greater the number of bacteria decomposing the waste and using oxygen in the process. Nitrates and phosphorous also contribute to high oxygen demand by providing nutrients for plants and algae to grow quickly, contributing to organic waste when plants die and decompose.

Reductions in oxygen level can be harmful to aquatic species and can, in extreme cases, create ‘dead zones’ where no fish or other organisms can live.

Dissolved Solids

Suspended solids can affect the clarity of the water and in turn adversely affect the photosynthetic activity of marine biome.

Micro Plastics

This is a more recent and topical concern relating to plastics entering the food chain, consumption by humans, and the longer term environmental and health impacts.

A number of studies have shown that during machine washing of man-made clothing significant numbers of tiny fibres are released into the waste water; and, in the case of yachts, into the grey water tank and eventually into the sea.

One such study is ‘The release of microplastic micro fibres from domestic washing machines: Effects of fabric type and washing conditions’ (Elsevier: Imogen E. Napper, Richard C. Thompson).

This study examined the release of textile fibres during machine washing of clothes from three commonly used fabrics; polyester, polyester-cotton mix and acrylic. The results showed that laundering 6kg of synthetic material could release between 137,951 – 728,789 fibres per wash, ranging in size between 20 𝜇m and <5mm. Given the load on most laundries and, composition of the fabrics washed, one can see the potential for a significant number micro plastics being discharged into the sea on a daily basis.

Dilution

It is important to note that when grey water is discharged into the surrounding sea it mixes with the sea water and dilution takes place. This effect can be affected by factors such as discharge rate, salinity, water temperature, wind, currents and, of course, a yachts movement.

The Alaska Department of Environmental Conservation (ADEC) concluded that dilution factor would range from approx. 5 to 60 and occur between 1 and 7 meters from the ship (ADEC, 2004). The EPA report suggests that the initial dilution estimated by ACSI and ADEC for a vessel at rest would not likely be great enough for untreated grey water to meet the ‘Gold Book’ standards for fecal coliform and enterococci

From tests conducted by the EPA, it was shown that the dilution effect, due to the movement of a vessel and the mixing by their propellers, for a ship underway between 9.1 and 17.4 knots was a factor of between 200,000:1 and 640,000:1 immediately behind the vessel and, based on those results all ‘Gold Book’ standards for water quality, apart from fecal coliform, would be met.

From this it can be seen there are significant benefits in only discharging when underway and away from the near shore.

Apart from yachts that have advanced waste treatment systems that treat both grey and blackwater compliant with MARPOL IV 9.1.1 and the guidelines in MEPC.227(64) most yachts will be discharging untreated grey water from their holding tanks, often with food waste contrary to MARPOL V, whilst static, directly into the sea. The effect of this can be observed in busy marinas and crowded anchorages on windless days when there is little water movement or seabed disturbance and the water takes on a milky and/or scummy appearance – the difference in water clarity around Cala de Volpe in and out of season is quite striking.

Furthermore, the grey water has the potential for human health risk – depending on contamination levels – especially for those engaging in activities such as swimming, jet ski, wake-boarding, or any other activity where they may ingest seawater or have contact via an exposed scratch or wound. There are also short and long terms considerations related to the marine ecosystem such as algae blooms, bacteria in shellfish, and the introduction of micro plastics into the food chain.

Whilst the issue surrounding grey water applies to commercial shipping as well, due to their sailing and trading patterns they tend to have little impact on inshore waters – as can be seen from dilution effect underway. For cruise ships, if they do not have suitable onboard treatment of grey water, the Cruise Lines International Association (CLIA) members voluntarily agreed to limit the discharge of untreated grey water to when they are underway at not less than 6 knots and at least 4 nm from the nearest land and not to discharge grey water when in port.

What can we do?

I outline some of the steps could be taken to reduce the impact of grey water discharges.

  • As per CLIA, no grey water discharge closer than 4nm from nearest land, underway at not less than 6 knots
  • No discharge of grey water in port if facilities available – marinas have work to do here?
  • Where available, discharge grey water to suitable reception facilities e.g. barge or ashore
  • On new builds, increase size of holding tanks to more practical sizes based on ‘practical’ use of yachts, so discharge can be better managed – including smaller yachts
  • Install filters to remove micro fibres from washing machines
  • Use ‘environmentally friendly’ cleaning and personal hygiene products – not just ‘ECO or Green’ labeled as these are often-abused and misleading descriptions – carefully scrutinise such claims and check if they have been independently assessed and verified
  • On new builds specify and install only black/grey water treatment plants
  • On refits, consider updating your treatment plant and include grey water
  • Consider dosing grey water with additives that reduce pathogens and/or organic matter
  • Avoid using in-sink macerators if the pulp discharges directly into grey water tanks – instead, bag, store and dispose as per MARPOL V
  • Installation of fat traps

Some of the above does not require major expense, just a change in operational procedures and, of course, education costs nothing.

The quality of our oceans, and its health are fundamental to yachting – it is the ‘playground’ from which we experience so much pleasure. With our intimate connection to the to the sea we have a responsibility to minimise our environmental impact, protect the long term health of our oceans, and to ensure that future generations get to experience the same pristine seas and diverse marine life that we have all enjoyed.

By |2021-12-17T14:40:55+01:00June 11th, 2021|captains, environment, Operations, regulations, Sustainability|

How much chain do you need?

I was prompted to write this because of the increasing restrictions in France due to environmental concerns and the impact anchoring has been having on the sea grass/Posidonia. This means that in many places along of the French coast, yachts will have to anchor in water >30m depth.

Although the French rules have perhaps highlighted this, it is not the only place where anchoring in water deeper than 30m is required; other places include Monaco, Capri, the Amalfi Coast, some anchorages in Croatia, Greece and Turkey, the fjords in Norway and Chile and, some of the Caribbean islands – it is not uncommon.

With that in mind, and my own experience of the yachts I have run, I ran a short survey on LinkedIn to gauge how much chain yachts carry.

Although not a huge response, the results were sufficient to mirror my own experience of the amount of chain some yachts carry – in some cases, totally inadequate.

The results to “how many shackles do you carry per anchor?

  • Less than 6 shackles – 18%
  • 7 shackles – 18%
  • 8 shackles – 33%
  • More than 9 shackles – 30%

Rule of Thumb

Of course, there are several ‘rules of thumb’ to help determine how much chain cable is laid depending on the depth of water, among other factors such as type of seabed, weather, current, length of stay, etc. Two such examples are: –

  • The International Association of Classification Societies (IACS) – length of chain in Metres = ratio 6 – 10 x Depth of Water in Metres.
    • For 30m this would be a minimum of 180m or just shy of 7 shackles.
  • The Admiralty Manual of Seamanship uses a formula – number of shackles = 1.5 x √Depth of Water in Metres.
    • For 30m this would be a minimum of just over 8 shackles.

With the above figures, if you err on the side of safety, just under 40% of yachts who responded may not have sufficient chain cable to anchor in water >30m depth and, at 35m depth, only 30% of yachts would have the recommended amount of chain. How this compares to the total fleet would be very interesting.

Interestingly, the RYA recommendation is for a minimum of 4 x Depth. For 30m depth only 4 shackles – approx. half of IACS and The Admiralty recommendation. This may be fine for recreational boats, but for superyachts this seems at odds with both IACS who test and approve anchoring arrangements for ships and superyachts, and the experienced seafarers of the Admiralty.

As RYA qualifications are inherent to Yacht Deck Officer training and certification, has their ‘rule of thumb’ become the standard that most superyacht crew use – again an interesting question!

There is no doubt IACS and The Admiralty are a more qualified authority when it comes to anchoring of ships and large yachts and in my opinion captains would be wise to use their ‘rule of thumb’ rather than the RYA.

The Mysterious Equipment Number

Until I did my Master Unlimited CoC, I never took time to consider how the size of anchor and length of chain were determined for a given vessel. That’s when I learnt about the Equipment Number (EN).

Most superyachts are Classed by one of the IACS members such as Lloyds, DNV GL, ABS, RINA, etc., and they use common rules to determine the mooring equipment. This is based on the EN which is calculated for every Classed vessel – the formula is as follows: –

EN = ² ⁄ ³ + 2 BH + 0.1A

Where:-

  • = moulded displacement in tonnes to Summer Load waterline
  • B = moulded breadth, in metres
  • H = effective height, in metres, from Summer Load waterline, to top of uppermost house
  • A = area, in square metres, in profile view, of the hull, superstructure and houses above Summer Load waterline.

The resulting EN is used in a table that details the number and mass of the anchor, chain length, diameter and grade, as well as towing and mooring lines.

Excerpt from Equipment Table – note ‘Total Length’ of chain is normally split equally between the two anchors.

It is important to note that the EN and anchor equipment is based on the following assumptions and limitations:-

  • Temporary mooring in harbour or sheltered waters
  • Current velocity: max 5 Kn
  • Wind velocity: max 48 Kn
  • No waves
  • Length of chain paid out, scope 6 -10
  • Good holding ground

The effect of waves is important – a significant wave height of just 2 metres would reduce the equivalent max current and wind velocities as follows:-

  • Current velocity: max 3 Kn
  • Wind velocity: max 21 Kn

A significant reduction in the holding power.

As most yachts use high holding power anchors (HHP) the rules also allow their mass to be reduced to not less than 75% of the table value.

Bitter End – Caution!

It is also important to know that the pin securing the bitter end to the chain locker is designed to be sacrificial and break at a load between 15% – 30% of the minimum breaking strength of the chain cable – it is designed to fail to prevent structural damage to the vessel.

It should be a fundamental part of the yachts risk assessment and procedures that, in the event of a runaway chain, the mooring team evacuate to a safe area as the flailing end of an anchor cable can have devastating effects – as was sadly experienced on Ocean Victory.

The anchor and mooring arrangements need to be carefully designed for the risks involved; unfortunately, some yachts, especially those with enclosed decks, place the windlass operator in harm’s way and do not provide safe egress in the event of a failure. Like many operational aspects of yacht design, work is still required to improve safety.

A Guide to Anchoring

The video ‘Anchor Awareness’ produced by DNV, GARD and The Swedish Club, although based on commercial ships, is also valid to larger yachts and is a useful resource that helps demonstrate anchor procedures and safe practice and is well worth a watch – especially for junior officers and deckhands who may be part of the mooring team.

Can be accessed by taping on the image below.

anchor awareness

This piece was not meant as a guide to anchor best practice, but to try to assess if yachts carried sufficient chain for the intended depth, and help fill in some of the knowledge gap that may be missing from the yacht syllabus.

I hope it imparts a better understanding of how anchor and chain cable size and length are determined for yachts. And, importantly, the amount of chain paid out relative to depth that is recommended by authoritative bodies.

This knowledge may result in more secure anchoring and the provision of chain more appropriate to the expected use, water depths and conditions that may be encountered.

I can sleep when I’m dead

I suspect many captains and crew will have succumbed to the embrace of this maxim – I know I have in my past.

Working long hours and having minimum sleep was often worn as a badge of honour, it demonstrated a grafter, someone who was willing to put in all the hours necessary to get the job done. But as research has now shown, sleep deprivation, whether acute or chronic, can have short term consequences – sometimes devastating – as well as long term physiological and/or mental health effects.

I was somewhat aware of the importance of sleep and things such as the circadian rhythm, but it was only recently after reading ‘Why We Sleep’ by Mathew Walker, who is currently Professor of Neuroscience and Psychology at the University of California, Berkeley, that I began to really appreciate why sleep deprivation can be so damaging to not just health, but also performance and safety.

The book details the reasons why we sleep, what happens during sleep, the benefits of sleep and the effects of disruption and/or deprivation. Like the air we breathe, the water we drink, and the food we eat, sleep is essential to our health. The Guinness Book of World Records happily records extreme activities such as a freefall from 41,422 metres and other events such as tight rope walking across the Grand Canyon without safety net or tether but does not recognise sleep deprivation records because of the danger to health!

What’s this got to do with yachting?

The World Maritime University (WMU) Report1 into the hours of work and rest (HOWR) in shipping also considers this subject and the effects of lack of rest, fatigue, safety and well-being of crew and these issues are equally applicable to yachting.

We know that the demands on crew have been increasing for many reasons and, in the main, there has not been any real change in the manning levels to meet that demand and on many yachts, it is likely that the quality and quantity of sleep is suffering as a result. Compounding the potential for sleep disruption are the variable work patterns that are an operational characteristic of yachting as the program and use changes e.g. guest-off, guest-on, daywork, watches, late finishes and early starts, even if crew are maintaining their HOWR.

Consider that the HOWR minimum rest period should not be less than 10 hours, but can divided into two periods, one of which not less than 6 hours. And that within that time there are factors such as eating, socialising, waking and preparing for work, that eat into sleep time. If working to the minimum regulations the longest period of sleep could be less than 5 hours – less than the amount research suggests is optimal.

I’m sure we all know how bad we can feel for days after a long-haul flight, yet crew are often expected to switch from working during the day to night at short intervals. Studies have shown it takes a day per hour of time zone difference for the body to acclimatise. It would take days for a crewmember assigned to work a night watch to properly adapt and perform at their best and they would likely be feeling the undesirable effects when they switched back to daywork at the end of the week – when they would have to go through the whole process again.

The working pattern and allowing sufficient time to acclimatise to the working hours is an important factor in helping with sleep and fatigue. I know in the past we used to rotate deckhands onto night watch once a week and stewardesses would frequently switch from late nights to early morning with the result their body clocks where probably always jet lagged. Having a schedule that allows acclimatisation to working hours is not an easy task given limited crew and variable demands but, where practical, it warrants a more considered approach.

Of course, it’s not just the work pattern that can disrupt sleep. The environment, such as noise and light, can affect the quality and quantity of sleep. Noise from being underway, picking up and dropping anchor, bow thruster operation, light from portholes or crew entering the cabin. And as we all know, the violent motion and noise of a yacht in rough weather also can severely disrupt sleep.

Crew accommodation and cabins are also a factor. Having somewhere free from noise and light pollution, with a comfortable ambient temperature, can be a challenge on some yachts, especially the smaller yachts where space is severely limited and often the crew mess and laundry are in the same space. Though, even on some larger yachts, the crew cabins can sometimes seem like an afterthought.

Minimising noise and light – beyond the minimum MLC standards – should be a priority such as: –

  • Black out blinds for portholes
  • Curtains around bunks that can also block light and afford some privacy
  • Low intensity lighting for crew corridors
  • Better sound insulation – especially crew corridors and where cabins back onto the crew mess or technical spaces
  • Improved isolation of equipment; resilient mounts, sound boxes.
  • Doors at corridor ends
  • Carpet with underlay in cabins and corridors

Some of the above could be applied to existing yachts.

For those who believe they can manage on minimum sleep, it is interesting to note, though not scientifically proven, that Ronald Reagan and Margaret Thatcher, two of the most well-known exponents of 4 – 5 hours of sleep, suffered in later years from Alzheimer’s. The point being, perhaps the cumulative effects of restricted sleep may be more profound than we might think.

Unlike shipping, our industry is not driven by commercial pressures but by more esoteric metrics such as pleasure, enjoyment, quality, safety, and security, all of which are heavily reliant on the crew. Yet often yachts are designed to comply with the minimum standards rather than the operational realities of delivering incomparable experiences to yacht owners and/or charter guests.

The ‘WHU Report’ and ‘Why We Sleep’ should be essential reading for anyone involved in the design and operation of a superyacht. They offer compelling reasons why better sleep can result in happier and healthier crew, better performance, safer yachts and why it deserves more attention in our indusrty.

*1 World Maritime University (2020). A culture of adjustment, evaluating the implementation of the current maritime regulatory framework on rest and work hours (EVREST). World Maritime University. (Attributed authors: Baumler, R., De Klerk, Y., Manuel, M.E., and Carballo Piñeiro, L.)
By |2021-06-28T08:54:52+02:00May 3rd, 2021|captains, crew, leadership, Managment, regulations, Safety|

Future Proof

Is it possible to ‘future proof’ a superyacht?

The reason for this question is that it doesn’t take much to realise that being able to switch your yacht from fossil fuel to green fuels in the future will have a positive impact on use, cost, and asset value.

Whilst these concerns and the transition away from fossil fuel seems to be far away, the impetus is growing and the reality is that when you take into account the design and build cycle along with the lifetime of a superyacht, you begin to understand why this may be an important consideration for anyone investing in a new build today.

Indeed, Lurssens recent announcement of a project using methanol and fuel cells may represent a paradigm shift for the industry. Though there are still questions about the availability of green methanol and storage and bunkering, this is probably the only superyacht in build that has the potential to adapt to a zero emissions future.

From discussions with other shipyards, it is clear that the environment is becoming an important consideration for some owners, and the pressure to act will only become more intense in the coming years.

The current narrative seems to be that ‘hybrid’ or ‘diesel electric’ (propulsion from electric motors) will allow you to simply remove the generators, replace them with a stack of fuel cells and then load up on green energy. On the surface these seems to make sense, however I think reality may be a little different.

When you look more deeply at the how, the challenge will not come from the replacement of the generators, it will come from the availability and choice of the green energy carrier that replaces the diesel fuel.

Currently hydrogen, methanol and ammonia seem to be the leading fuels in the drive to zero emissions shipping. LNG and biofuels also provide a useful pathway that helps reduce emissions but are unlikely to be the long-term solution.

The production of green ammonia or methanol, also known as ‘e’ fuels, require hydrogen produced via electrolysis using nuclear or renewable electricity and synthesis with air (e-ammonia) or CO2 (e-methanol). It is a very energy intensive process and methanol also depends on the supply of green CO2 e.g. biomass or direct air capture (DAC).

Due to the amount of energy required to produce these fuels and supply chain costs, these fuels are likely to be more expensive than today’s diesel. Technology and innovation in all its forms will still be necessary to reduce energy consumption.

Worth noting is that hydrogen, ammonia, and methanol, can be used in internal combustion engines (ICE). For example, the Ro-Ro/Pax carrier, Stena Germanica was successfully converted to run on methanol. This could provide another pathway for us; though I don’t know if these ‘gas’ or ‘dual fuel’ ICE’s are suited to superyachts? Maersk has also announced the building of a ship to run on methanol, whilst acknowledging that they are not entirely sure of fuel supply or infrastructure – I think it demonstrates a leadership that may help break the supply/demand impasse and drive change.

The major challenge with all these fuels for yachts, where space and aesthetics – a cryogenic hydrogen tank on the aft deck would not be ideal – are major factors, is that they are less energy dense than diesel, require more volume for the same amount of energy, along with special storage and enhanced safety due to the nature of the fuels e.g. flammable and toxic.

More information an be found in The International Maritime Dangerous Goods (IMDG) Code, International Code of Safety for Ship Using Gases or Other Low-flashpoint Fuels (IGF Code) and IMO MSC.1/Circ.1621 Interim Guidelines For The Safety Of Ships Using Methyl/Ethyl Alcohol As Fuel.

This excellent diagram of Volumetric and Gravimetric energy of various fuels from DNV-GL – Comparison of Alternative Marine Fuels, Report No: 2019-0567, Rev. 3, clearly highlights the energy differences.

Specific energy volume and weight
Energy densities for different energy carriers (inspired by /49/ /72/ and /73/ of the report). The arrows represent the impact on density when taking into account the storage systems for the different types of fuel (indicative values only)

Hydrogen, due to the storage requirements, compressed or liquid, probably excludes its use directly as a marine fuel on superyachts though, as with shipping, it may be well suited to coastal cruising. Much more likely, as with the Lurssen project, is that methanol or ammonia is used as the energy carrier and converted back into hydrogen using reformers onboard if fuel cells are used.

The resultant hydrogen would then be used in Proton Exchange Membrane (PEMFC) or High Temperature Proton Exchange Membrane (HT-PEMFC) fuel cells. HT-PEMFC are less critical on the purity of the hydrogen and the heat can be used to improve the overall efficiency – though, to date, as an industry we have not been very energy efficient with the use of waste heat from engines or generators.

Although solutions for the storage, ventilation, safety and bunkering of methanol and ammonia will no doubt be found – it’s already carried onboard ships either as a fuel or cargo – how this is integrated into the hull of a superyacht may have some significant impacts on space, layout and, of course, range.

I think some caution is required before promoting the use of ‘hybrid’ or ‘diesel electric’ as ‘future proof’ solutions. We need to be able to demonstrate how this would work, the practicalities and impact on cost, safety, use, space and range to name just a few considerations. This will be crucial to the future growth of the industry as yacht owners and their advisors will need to weigh these factors in their decision-making process.

Finally, Lurssen and their visionary customer, may have found one pathway that helps answer the question. That is a real benefit to the future of the industry.

By |2021-06-14T09:36:42+02:00April 22nd, 2021|captains, environment, regulations, Safety, Sustainability|
Go to Top